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Tracer dispersion in three-dimensional multipole flows

Ming Zhang and Joel Koplik
Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 1

~Received 23 January 1997!

The transit time distribution for the hydrodynamic dispersion of a passive tracer in three-dimensional
reservoir configurations of localized sources and sinks is related to the large-scale geometry of the system.
Extending previous work on the planar case, we find that the first-passage transit time probability distribution
function has a region of power-law decay, depending only on the multipole order of the distribution of fluid
sources and sinks, an exponential decay region, whose characteristics are related to stagnation points in the
flow field, and a shoulder whose location is related to the system size. Tracer measurements may thus be used
as a noninvasive surface diagnostic tool to characterize subsurface reservoirs.@S1063-651X~97!11710-X#

PACS number~s!: 47.55.Mh, 05.40.1j
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I. INTRODUCTION

The majority of theoretical and laboratory studies of h
drodynamic dispersion in porous media focus on flows
which the average fluid and tracer motion is one dimensio
@1–5#. Aside from the relative ease of analysis associa
with quasi-one-dimensional behavior, this configurati
arises automatically in studies of cylindrical ‘‘cores’’ o
natural porous material extracted during drilling. Howev
in many practical applications to aquifers and hydrocarb
reservoirs, fluid enters and leaves the system through w
which are localized sources in three dimensions, and so
flow is multipolar rather than linear on average. Three p
vious papers@6–8# ~referred to henceforth as I, II, and III
respectively! considered dispersion in multipole flow in tw
dimensions, appropriate to an approximately planar por
stratum in the earth. The results indicated first that dispers
in two-dimensional~2D! multipole flow differed qualita-
tively from the quasilinear case, and second that the dis
bution of transit times between sources and sinks incor
rates a great deal of information about the reserv
geometry. This paper extends the earlier methodology to
more general case of 3D systems, and we find a qualita
similarity but important quantitative differences.

We will consider a steady incompressible fluid flow in
three-dimensional porous medium, satisfying Darcy’s la
into which ad-function pulse of passive tracer is inserted
time t50. The flux of tracer exiting the system as a functi
of time, p(t), will be the focus of the analysis. Typically, i
petroleum recovery applications, for example, fluid ent
the medium at an injection well and exits at one or mo
producing wells, and the well diameters are very small co
pared to the extent of the reservoir. In consequence the
effectively a point source and multiple point sinks for flui
and the flow field is a potential flowmultipole. The tracer
concentrationc(rW,t) is assumed to satisfy an appropriate
cal convective diffusion equation with boundary conditio
corresponding to unit source of flux, reflecting conditions
the boundaries of the porous medium, and absorbing bou
ary conditions corresponding to point sinks at the flow o
let~s!. ~The fluid velocity at entry and exit is large in practic
561063-651X/97/56~4!/4244~15!/$10.00
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and tracer backflow is negligible.! An equivalent problem is
that of a random walker who starts at the inlet, execute
walk whose random steps are biased by the local velo
field, and is absorbed at the outlet;p(t) is then identical to
the first-passage probability distribution function for arriv
at the sink.

The mathematical problem is formulated as follows. T
potential flow due to a set of sources and sinks at positi

$aW i% with respective volumetric fluxes$Qi% is

uW ~rW !5¹W F~rW !,

where

F52(
i

Qi

4pF 1

urW2aW i u
1

r

ai urW2AW i u
G , ~1!

whereF is the velocity potential, proportional to the flui
pressure, and it is assumed that we have a closed syste
that ( iQi50. In most cases we are interested in a fin
spatial region with impermeable boundaries, which we ta
to be a sphere of radiusR, on which the normal fluid velocity
should vanish. The terms in Eq.~1! involving AW i[(R/ai)

2aW i
are precisely the image sources@9# outside the sphere which
enforce the latter condition. The tracer concentrationc(rW,t)
satisfies the convective diffusion equation~CDE!

]c

]t
1uW ~rW !•¹W c5D¹2c, ~2!

with diffusivity D. Strictly speaking one should use the e
fective diffusivity tensor@1–5# which is a function of the
velocity uW (rW), but as shown in II, the results for multipol
flows are independent of which is used. The reason is
the modifications toD are only important when the loca
Péclet number is large, but in this case the tracer motion
4244 © 1997 The American Physical Society
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56 4245TRACER DISPERSION IN THREE-DIMENSIONAL . . .
dominated by convection anyway, while at low Pe´clet num-
bers where diffusion matters, the corrections are unimpor
to the scaling behavior.

The distinction between the well-studied case of c
flows and the higher-dimensional flows considered here
that in the former case the velocity field is constant on av
age, so that a tracer pulse simply translates with the m
velocity and spreads about its center due to~convectively
enhanced! diffusion. All fluid streamlines run more or les
unidirectionally from source to sink and, at least in the s
tistically homogeneous and isotropic case, are affected by
same random environment. There is thus a well-defi
mean velocity about which the individual tracer particl
fluctuate, so that the tracer exit profile is sigmoidal. The m
interesting feature is the width of the step, which can
related to the effective tracer diffusivity, and large-scale h
erogeneities manifest themselves as long-time tails inp(t).
In higher dimensions, the flow is instead multipolar a
spreads the tracer in all directions. Since the velocity i
strongly varying function of position, different packets
tracer are affected by entirely different environments.

A qualitative analysis of the features of the transit tim
distribution in the multipole case is as follows. The flow fie
can be divided into several subregions, which are in one
one correspondence with distinct features in a typical plo
p(t) vs time given in Fig. 1.~1! The early arrival regime
corresponds to tracer which moves roughly directly fro
source to sink. This part of the curve is sensitive to sm
scale features of the geometry, such as the distance
source to sink, and will not be considered in detail he
Tracer which does not initially head towards the sink is c
ried out into the porous medium on a streamline of the m
tipole flow field. ~2! Those streamlines which simply circl
between source and sink without approaching the sys
boundaries are scale invariant—the velocity decays a
power of distance and, as we shall discuss, there is a co
sponding power-law decay inp(t). ~3! Some outgoing
streamlines do pass near the boundary of the medium an
distorted from a pure multipole form; tracer particles follow
ing such streamlines in a sense reflect from the bound
and produce an enhancement or bump inp(t) above the
value associated with pure multipole flow. This ‘‘echo’’ e

FIG. 1. Generic form of the transit time distribution obtained
this paper.
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fect occurs at a time given by the transit time from source
boundary to sink. Since velocities tend to be small near
boundary, the local Pe´clet number is often small there, an
the tracer motion and the corresponding transit time wo
be diffusive. ~4! Outgoing streamlines which approach
stagnation point have velocities which vary linearly with t
distance from it. Correspondingly, tracer particles followi
such streamlines spend an exponentially long time near
stagnation point, leading~see below! to an exponential decay
in p(t). ~5! If the system is large enough, and/or the flu
velocity is small enough, the motion will be predominant
diffusive at large distances from the sources and sinks
this case the tail ofp(t) is controlled by simple diffusion in
a finite region, and an exponential decay is expected
drawing the figure, we have omitted the distinction betwe
regions~4! and ~5!, but it was observed in some of the 2
cases in II.

The general arguments in the last paragraph summa
the 2D results in@6–8# and their demonstration in 3D will be
the subject of this paper. In addition, the detailed argume
to follow will provide universal numerical values for th
power-law exponents, and system-dependent estimates
the exponential decay rates. The methods used here dir
extend those of the earlier papers to 3D, and we proceed
similar fashion. In Sec. II we focus on the power-law regim
and consider the limit of pure convection in multipole flow
To incorporate diffusion, but remain at high Pe´clet numbers,
a numerical method based on individual random walkers
optimal. At low Péclet number it is more efficient to conside
the ensemble of random walkers, or equivalently the c
tinuum CDE. We discuss and implement two related me
ods, which may be described as ‘‘probability propagation
These methods are reviewed and applied in Sec. III. La
we turn in Sec. IV to the effects of systematic deviatio
from statistical homogeneity in the porous medium. F
weakly correlated fluctuations we find no change in our
sults until the magnitude of the relative perturbation isO~1!.
Large-scale heterogeneities, such as impermeable bar
do yield significant changes, however, and we discuss
nontrivial example in detail. A summary and conclusio
appear in Sec. VII. A very general argument for the pow
law exponents, due to Hinch@10#, is given in the Appendix.

II. PURE CONVECTION

Most of the behavior we find in multipole flows appea
in the limit of pure convection, or infinite Pe´clet number, and
furthermore analytic arguments are possible in this case.
first consider simple dipole flows numerically, then relate t
observed features to simple approximate analytic calc
tions, and finally verify the systematic behavior in mo
complicated configurations.

A. Simple dipole flow

In pure convection tracer particles are simply carri
along their initial streamlines, so that the CDE is replaced

drW~ t !

dt
5uW „rW~ t !…. ~3!
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4246 56MING ZHANG AND JOEL KOPLIK
The velocityuW (rW) is given by Eq.~2!, specialized to the cas
of a source and sink placed ata1,25(0,0,7a), respectively.
We nondimensionalize all lengths usinga, and time using
4pa3/Q, so that the equations of motion simplify t
uW (rW)5¹W F with

F5@V1~0,0,21!1rV1~0,0,2R2!#

1@V1~0,0,11!1rV1~0,0,1R2!#, ~4!

whereV1(rW0)[21/urW2rW0u is the potential of a point sourc
at rW0. The terms in Eq.~4! are the source and sink at~0,0,
71) along with the image sources at~0,0,7R2) which are
needed to make the normal velocityr̂ •¹W F vanish on a
sphere of radiusR @9#. The flow is symmetric about thez
axis and convective tracer motion is confined to a plane
constant azimuthal anglef.

If the flow domain is unbounded, corresponding toR→`
in Eq. ~4!, we can actually find the transit time distributio
analytically. In II it was shown for planar convection in
simple dipole velocity field that the transit time from sour
to sink along a streamline is

t~u!52csc2u@12ucotu# →
u→p

2p

~p2u!3 . ~5!

Here u is the initial angle with respect to the dipole axi
with the convention thatu50(p) is the direction towards
~away from! the sink. Convective motion in a static flow
field is deterministic, but a probability distribution of trans
times results from a distribution of initial anglesu:

p~ t !5p~u!Udu

dtU. ~6!

The initial angle distribution is determined by the physic
consideration that tracer emitted from a high-velocity po
source will spread out uniformly in direction, correspondi
to the locally radial velocity profileuW (rW)'¹W V1(0,0,21).
The appropriate distribution of initial angle is thenp(u)
}sinu, uniform in solid angle. Substituting into Eq.~6! we
obtainp(t);t25/4. A simple and self-contained but approx
mate argument for this result will be given below.@In the
completely planar case considered in II,p(u) is a constant
andp(t);t24/3.#

If we return to a spherical flow domain and retain t
image terms, the transit time distribution must be found
merically. A random initial angle is chosen with probabili
distribution p(u), Eq. ~3! is integrated numerically~using a
variable-step, variable-order, backwards difference routin!,
and p(t) is found numerically from Eq.~6!. The result is
shown in a log-log plot in Fig. 2~a!: there is a seven-decad
region of times wherep(t);t25/4, followed by a cutoff.
~The early-time regime is omitted as being uninteresting.! As
in II, streamlines with initial angles near but not too near
f

l
t

-

p are not distorted by the impermeable boundaries, and
infinite-space analytic result should and does apply. Fou
very close top the streamlines approach stagnation points
the boundary of the confining sphere atrW5(0,0,7R), and
the tracer motion is substantially altered. In Fig. 2~b!, we
show the long-time region in a semilog plot, which is well
by p(t);e2t/t with t52.53107.

Because the motion is planar, the decay constantt may be
found directly using previous arguments for the 2D case
was shown in II that the distribution of transit timesP(T) for
particles to traverse the region near a 2D stagnation poin

P~T!5P0~x0!Udx0

dTU ;
x0→0

P0~0!e2GT. ~7!

FIG. 2. Transit time distribution for pure convection for
simple source-sink dipole inside a sphere;~a! complete range of
times,~b! tail region.
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56 4247TRACER DISPERSION IN THREE-DIMENSIONAL . . .
In this expression,x0 is the initial displacement transverse
the streamline leading to the stagnation point, with proba
ity distribution P0, and G[u]uz /]zu, wherez is the local
coordinate along the streamline. The trajectories leading
the tail region ofp(t) have relatively large velocities nea
the source and sink, exponentially small velocities near
two antipodal stagnation points, andO(R23) velocities on
the circular arc near the sphere boundary. The overall tra
time is dominated by the two stagnation regions, sot'2T
andp(t)'P0(t52T);e2(G/2)t where

G5U 8~R211!2

R2~R221!3U ~8!

is the derivative of the velocity field arising from Eq.~4!.
SubstitutingR5100, we obtaint52.53107, in agreement
with the numerical results. The extension of this result
fully 3D trajectories will be given below in Sec. II D.

B. Power-law behavior

The power-law regime inp(t) may be understood in
terms of the general characteristics of motion along dipo
streamlines, as in I and II. We will consider the slightly mo
general case of tracer emission in an axially symmetric m
tipole flow, since the argument is essentially the same as
the dipole case. If in potential flow we have an arbitra
distribution of sources and sinks,r(rW), it is often useful to
represent the solution as a multipole expansion

F~rW !52(
l 50

`

(
m52 l

l
4p

2l 11
ql ,mr 2 l 21Yl ,m~u,f!, ~9!

where the Yl ,m are spherical harmonics andql ,m

5*d3rr l Ylm* (u,f)r(rW) are multipole moments. Suppos
that far from the sources and sinks, and also far from
spherical boundary of the flow domain, the leading nonv
ishing term in the distributionr is axially symmetric (m50)
and has multipole ordern, so that

F;r 2n21Pn~u!, ~10!

wherePn is a Legendre polynomial. For an incompressib
axisymmetric flow, the velocity field may be given equiv
lently in terms of either the potentialF or the stream func-
tion C as

uW ~rW !5~ur ,uu!5S ]F

]r
,
1

r

]F

]u D5S 21

r 2sinu

]C

]u
,

1

rsinu

]C

]r D
~11!

so from the asymptotic form ofF we deduce

C;
sin2uPn8~cosu!

nrn . ~12!
l-
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In the convective limit, a tracer particle remains on
streamline, whereC is a constant, so the trajectory
r;(sin2uPn8/nC)1/n. Writing uu5r u̇, and eliminatingr , we
haveu̇; f (u)C (n13)/n, where the explicit form off will not
be needed. Now for annth-order multipole, the flow field
consists ofn lobes of roughly concentric streamlines, each
which traverses a certain range ofu. The transit time is then
the time required foru to run through the appropriate inte
val, and may be computed as

t5E dt5E
u1

u2 du

u̇
;C2~n13!/n. ~13!

Next we must relate the value ofC to the angle at which a
tracer particle is emitted from the source. The trajector
contributing to the tail ofp(t) are those which leave th
source nearu5p. If for r 5r 0, u5p2e with r 0 ,e!1, then
C;e2 from Eq. ~8!. The transit time distribution follows
from Eq. ~6!, with p(u);sinu;e and t;e22(n13)/n:

p~ t !;t2~2n13!/~n13!. ~14!

For the dipole case ofn51, we recoverp(t);t25/4 as ob-
served numerically.

C. Numerical results for other flows

We have actually studied a number of convective ca
involving higher multipole moments@11#, but the trend can
be seen clearly from two further cases, an asymmetric fl
to explore the effects of variation in azimuthal angle, and
higher multipole flow to verify the predicted variation wit
n.

First we consider an asymmetric dipole flow, arising fro
a source of~dimensionless! strength12 at ~0,0,1! and two
sinks of strength21 at ~0,61,0!. The velocity potential,
including image terms, is

F~rW !5@2V1~0,0,1!2V1~0,1,0!2V1~0,21,0!#

1r @2V1~0,0,R2!2V1~0,R2,0!2V1~0,2R2,0!#.

~15!

The planar streamlines in they-z plane are shown in Fig. 3
for orientation, but the flow field generally varies with az
muthal anglef. Figure 4 shows the numerical results: for th
initial angle of emission of the tracer particle from the sour
we choose a value off and a range ofu near 0, and obtain
p(t) using the procedure described above. The curves
semble each other and, as summarized in Table I, both
power-law index and the exponential decay rate are indep
dent off. The value ofn'5/4 is the same as for a symme
ric dipole, while t'2.43107 are close to each other bu
differ from the previous value for a simple dipole.

Secondly, we have studied a quadrupole ‘‘five-spot’’ p
tern, often used in petroleum recovery, with a source
strength14 at the origin and sinks of strength21 at the
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FIG. 3. Illustrative streamlines in they-z
plane for asymmetric dipole flow.
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corners of a square in thex-y plane at~1,1,0!, ~1,21,0!,
(21,1,0!, and (21,21,0!. ~In practice, the five spot is rep
licated roughly periodically.! Again we display the stream
lines in the plane for orientation, in Fig. 3, and repeat
procedure of emitting tracer at variousf and a range ofu.
The results shown in Fig. 5 and Table II show a power-l
region with p(t);t27/5 and an exponential decay tail wit
t'2.53105, both independent of the initialf. The power-
law exponent agrees with the theoretical estimate~10! with
n52, although the curves have a larger preasymptotic
gime associated with the fact that the lobes of the quadru
field are less developed.

The fact that the behavior ofp(t) is independent of the
initial azimuthal anglef came as a welcome surprise to u
since it permits an understanding of the results by anal
arguments. Subsequent to the original submission of this
per, an elegant and very general argument was found
Hinch, which is given in the Appendix.

D. Three-dimensional stagnation points

We wish to extend the 2D connection between stagna
points and exponential decay ofp(t) derived in II to the 3D
case. Suppose the stagnation point lies at the origin,
expand the velocity potential locally as

F~xW !5a01(
i

aixi1(
i , j

ai , j xixj1•••. ~16!

The constanta0 is irrelevant, and the linear term vanish
identically if xW50W is a stagnation point. The matrix of qua
dratic coefficients$ai , j% is symmetric and can be diagona
e

e-
le

,
ic
a-
by

n

nd

ized by a similarity transformation, and furthermo
Laplace’s equation implies that its trace is zero. Suppose
in the transformed coordinate system,a11,0 so that a con-
vected tracer particle approaching the origin along the 1-a
hasẋ1522ua11ux1 and approaches the origin exponentia
slowly, x1(t)5x10e

22ua11ut. In at least one of the other two
directions, the corresponding diagonal quadratic term inF is
positive, so, for example,x2(t)5x20e

12a22t with a22.0. A
trajectory near the 1-axis approaching the origin will eve
tually diverge outwards from the stagnation point in t
2-direction. We can define a transit timeT for the stagnation
point region by requiring that the outgoing veloci
is O~1!: ẋ2(T)5U05O(1). This definition yields T
5(2a22)

21lnU0/2a22x20. If the third diagonal element ofF
is negative, that coordinate tends to zero, while if it is po
tive the above argument should make use of the larger ofa22
anda33 and its spatial direction.

The distribution of initial coordinates near the stagnati
point leads to an exponential distribution of transit times:

P~T!5E dx20dx30p~x20,x30!dS T2
1

2a22
ln

U0

2a22x20
D

5U0e22a22TE dx30pS U0

2a22
e22a22T,x30D ;

T→`

e22a22T.

~17!

For the asymmetric dipole example with stagnation points
~0,0,7R) one finds after some straightforward algebra th
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FIG. 4. Transit time distribution for pure convection in asymmetric dipole flow for various initial azimuthal angles;f5 ~a! 0, ~b! p/6,
~c! p/2, ~d! 2p/3.
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$ai , j% is diagonal with elementsa11
21524.93105'a22

21 and
a33

2152.413107, where we have takenR5100 as in the nu-
merical simulations. The decay constant associated with

TABLE I. Power-law exponents@p(t);t2a# and exponential
decay constants@p(t);et/t# fit to the numerical results for axisym
metric dipole flow, for various initial azimuthal angles.

f0 a t31027

01 1.2560.02 2.4760.04
p/6 1.2560.01 2.4160.04
p/3 1.2460.01 2.4560.01
p/2 1.2460.02 2.3760.03
2p/3 1.2560.01 2.4160.01
5p/6 1.2460.02 2.4560.04
p2 1.2560.02 2.4760.04
he

complete trajectory with two stagnation points is then tw
2a33

21 or t52.413107, in agreement with the numerical re
sults, taking into account the uncertainty in estimating
decay constant from the numerical data. Similarly for t
five-spot quadrupole flow, one findst52.5031025 analyti-
cally, in comparable agreement with the numerical value

III. INCORPORATION OF DIFFUSION

At any finite Péclet number tracer particles will of cours
diffuse as well as convect, but if Pe is large it is compu
tionally convenient to simply add some random diffusi
motion to the pure convection treated above@12#. Specifi-
cally, if a tracer particle is atxW at time t, we adopt the
displacement rule

DxW5uW ~xW !Dt1n̂S 6Dt

Pe D 1/2

, ~18!
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FIG. 5. Transit time distribution for pure convection in five-spot flow for various initial azimuthal angles;f5 ~a! 0, ~b! p/12, ~c! p/8,
~d! p/12.
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where n̂ is a unit vector of random orientation. The trac
concentration C(xW ,t) satisfies C(xW ,t1Dt)5C(xW2DxW ,t),
and if this expression is averaged over realizations ofn̂ one
obtains the CDE in dimensionless form. Although in pri
ciple this method is valid at any Pe´clet number, in practice
the statistical fluctuations obscure the result unless Pe@1.

TABLE II. Power-law exponents and exponential decay co
stants fit to the numerical results for five-spot flow, for vario
initial azimuthal angles.

f0 a t31025

01 1.4260.02 2.5360.02
p/12 1.4260.02 2.4860.03
p/8 1.4060.03 2.4860.03
p/6 1.3960.03 2.4160.03
p/4 1.3560.05 2.4760.04
We have applied the single-random-walker method to
three flow fields previously studied in the convective lim
Initially, a random walker is placed at a random position
the surface of a small sphere of radiusr 050.01a about the
source~corresponding to the finite size of a well bore! and
then displaced according to rule~18! until the walker reaches
the surface of a similar small sphere about the sink. The t
stepDt is chosen so that the maximum displacement per s
is at most 0.01a. The Pe´clet number is defined a
Pe5aumax/D, where the maximum velocityumax is related
to the fluxQ by Q54pumax

2 r 0
2 . The random walk procedure

is repeated 500 000 times, and the histogram of arrival tim
is converted into the probability distribution functionp(t) as
above. In Fig. 6 we show the results for the simple dip
flow discussed in Sec. II A. At the lowest Pe the curve
noisy and difficult to interpret, but as Pe increases, we se
increasing time interval over which the pure-convection
sult p(t);t25/4 holds. At long times, noise is still present i

-
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FIG. 6. Single-random-walker calculations ofp(t) for a simple dipole flow at various Pe´clet numbers;~a! Pe57161,~b! Pe571 610, and
~c! Pe5716 100.
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the tail region due to the relatively small number of walke
present there, but there is a hint of the shoulder alluded t
the Introduction. Likewise, for the asymmetric dipole flo
@Fig. 7~a!# and the five-spot flow@Fig. 7~b!#, at high Pe we
observe a region of convective power-law behavior follow
by a tail region where statistical fluctuations obscure the
sult.

The behavior in the tail regions may be computed us
methods which rely on the continuum CDE more direct
and in a sense average over the previous fluctuations. A
paper II, we have used two somewhat related methods w
might be described as ‘‘probability propagation.’’ The sim
plest procedure is to consider a spatial lattice of spacingl ,
and let p(rW,t) be the tracer concentration or probability
occupancy of a lattice siterW at time t. At a later time, this
probability hops to nearest neighbor sites according to
in

d
-

g
,
in

ch

p~x,y,z,t1Dt !5rx1p~x2l ,y,z,t !1rx2p~x1l ,y,z,t !

1ry1p~x,y2l ,z,t !1•••, ~19!

where the hopping rates arerx651/66ux(rW)Dt/2l and so
on, and represent symmetric displacements with
convection-induced bias proportional to the local velocity.
the limit Dt→0, Eq. ~19! reproduces the CDE with
D5l 2/2Dt. The time step should be chosen small enou
that the hopping rates are positive, and a constraint on
maximum value of Pe for a given lattice spacing is there
implied: Pemax52a/3l . In Fig. 8 we show results using thi
method for a representative case: the simple and asymm
dipole flows at Pe54.4. A limited range of power-law be
havior is present, along with a very prominent shoulder r
resenting the diffusive boundary echoes, previously see
2D calculations.
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We have also extended theoff-lattice continuum method
of II to the 3D case. Here one again works withp(rW,t), but
the time-evolution rule is to first convect this probability
the positionrW1uW (rW)Dt, which is generically not a lattice
site. This probability is then redistributed to the adjacent
tice positions in such a way as to conserve the mean pos
and to relate the mean-square fluctuation to the diffus
coefficient. In detail, suppose the point to which tracer
convected isrW5(x,y,z) and that the nearest lattice site is t
origin, and letwi jk be the fraction of tracer to be distribute
to lattice site (i , j ,k). We will use the simplest rule, in which
w is only nonzero on the six nearest neighbor sit
(61,0,0), etc. The constraints onw are conservation o
tracer,

(
i jk

wi jk51, ~20a!

FIG. 7. Single-random-walker calculations ofp(t) for ~a! asym-
metric dipole flow and~b! five-spot flow, both at Pe5716 100.
t-
on
n
s

,

no change in mean position,

l ~w1002w2100!5x, etc., ~20b!

and diffusive mean-square displacement,

(
i jk

wi jk~xi jk2x!25~Dx!252DDt, etc.,

which translates into

~ l 2x!2w1001x2~w0101w02101w0011w00211w000!

1~ l 1x!2w210052DDt, ~20c!

FIG. 8. On-lattice probability propagation results for~a! simple
dipole flow and~b! asymmetric dipole flow, both at Pe54.4.
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etc. The solution of these equations is

w000512
x21y21z216DDt

2l 2 ,

w61005
2DDt6x~ l 6x!

2l 2 , etc. ~21!

Again as in II, there are constraints which follow from pos
tivity of the redistribution probabilities. If we define
d52DDt/l 2, then w000.0 gives an upper bound ond,
while w100.0 gives a lower bound. Ostensibly we can ha
rW253l 2/4, since the origin is the nearest lattice site torW, but
in this case no value ofd ensures positivew’s. We avoid the

FIG. 9. Off-lattice probability propagation results for~a! simple
dipole flow and~b! five-spot flow, both at Pe54.4.
difficulty by limiting the convective steps touxu,uyu,uzu<l /3,
in which cased52/9 is satisfactory. There is a resultin
maximum Pe´clet number of 3A3a/l . We illustrate the
method in Fig. 9, where we have considered the simple
pole and five-spot flows at Pe54.4. The simple dipole result
are consistent with the earlier probability propagati
method, and in both cases we again see a power-law inte
with the convective exponent and a diffusive shoulder.

IV. EFFECTS OF HETEROGENEITY

Up to now, we have considered porous media that
statistically homogeneous and isotopic, so that the c
tinuum equations used above have constant coefficients.
alistically, petroleum reservoirs and aquifers have prope
variations on a range of length scales ranging from the p
scale fluctuations which have been implicitly averaged o
here to macroscopic geological features@13#. It is therefore
appropriate to investigate the effect of such heterogene
on the characterization of the transit time distribution p
posed here. The range of possibilities is too great for a s
tematic survey, so we will consider three cases
uncorrelated fluctuations in the velocity field, layered b
otherwise uncorrelated fluctuations~representing the effect
of geological stratification!, and an example of a macro
scopic barrier.

A. Uncorrelated fluctuations

We begin with the case of a quenched random fluctua
in the velocity field, taken in the form

uW ~xW !5uW 0~xW !1uW r~xW !1uW c~xW !. ~22!

In this expression,uW 0 is the unperturbed source-sink veloci
field, and the random perturbation isuW r(xW )5l j(xW )uW 0(xW ),
wherel is an adjustable magnitude, andj is a random num-
ber in the interval@21,1# assigned at each lattice poin
While uW 0 is an incompressible velocity field by constructio
the uncorrelated random term has a nonzero divergenc
general. We restore incompressibility by adding a coun
term uW c[¹W Fc , where¹2Fc52¹W •uW r . The Poisson equa
tion for Fc is solved numerically using a standard solv
@14# and differentiated numerically to obtainuW c . The tracer
motion is obtained using the single-random-walker meth
fluctuations in the velocity would be most significant at hi
Pe, so we restrict ourselves to this regime. Since the tra
motion in this method is not restricted to the lattice sit
where uW r and uW c are defined, the values of the latter tw
fields are obtained by numerical interpolation.

In Fig. 10 we showp(t) for three choices of fluctuation
strengthl50.01, 0.1, and 0.5, for a simple dipole flow in
sphere of radiusR530. ~We use a smaller system than pr
viously, due to the computational cost associated with so
ing the Poisson equation, and the time interval where pow
law behavior applies is correspondingly reduced.! The trend
of the results is that for small enoughl the results are indis-
tinguishable from simple dipole flow, for intermediate valu
the transit time distribution is noticeably altered but thet25/4
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FIG. 10. Effects of uncorrelated fluctuations onp(t): simple dipole flow at Pe5716 100 using the single-random-walker method
various fluctuation strengths.l5 ~a! 0.01, ~b! 0.1, ~c! 0.5.
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power law is still recognizable, but forO~1! fluctuations it is
difficult to recognize a power law at all. The behavior
p(t) correlates with the alteration in typical individual pa
ticle trajectories, illustrated in Fig. 11. Realistic geologic
systems often show prominent stratification@13#, and we
have considered one example, where we suppose that la
are oriented parallel to thex-y plane. In Eq.~22!, we then
takel→l(z) with layers of thickness 5 andl(z) piecewise
constant within each, with values chosen randomly betw
0 and 0.5. The power-law behavior is still evident. The co
clusion from this set of examples is that the predicted pow
law behavior in Eq.~14! is robust, and will survive unde
perturbations which are not too strong. We have also con
ered the transit time distribution at lower Pe in the prese
of fluctuations using the probability propagation method, a
even forl50.5 there is only a slight change in the comput
p(t), and the shoulder in particular.
l
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n
-
r-

d-
e
d

B. Effects of an impermeable barrier

If we introduce a major change in the flow pattern, w
expect that the global shape of the streamlines is altered
in the light of the results of paper II and the analytic es
mates in Sec. II B, a change in exponent. We illustrate t
behavior by the single example of a large impermeable b
rier placed in the simulated reservoir. We consider a cu
geometry of2L,x,y,z,1L, with a source-sink pair a
~0,0,7a) with a barrier in the region behind the sourc
$2L,x,0,2L,y,L,22a,z,23a%. The streamlines
in the meridional (y50) plane are shown in Fig. 12, wher
we have adopted the valuesL58 anda51, and were ob-
tained from a numerical solution of the Poisson equation
the velocity potential, with Neumann boundary conditions
the sides of the cube and the barrier. The tracer transit t
distribution was studied for various ranges of Pe using al
the methods described above.
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For pure convection, there is a clear distinction betwe
trajectories emitted in the two half spaces away from or
wards the barrier. For the former group,x0.0 or f0,up/2u,
the meridional streamlines at least are qualitatively simila
those of simple dipole flow, and indeed as seen in Fig. 13~a!
the simple dipole exponentp(t);t25/4 applies. The second
group consists of trajectories emitted into the lower h
plane, and now the behavior is sensitive to the initial value
u. Here, Fig. 12 suggests that ifu0 is not too close top the
streamlines are again roughly dipolar, but otherwise they
substantially altered. Since increasingu increases the trans
time, we would expectp(t) to have a dipolart25/4 regime at
moderate times, crossing over to some other behavio
longer t. The result of the convective calculation shown
Fig. 13~b! for p/2,uf0u,p confirms this prediction; there
is a dipolar interval at short times, crossing over tot21.39,
and eventually an exponential decay due to finite sys
size. In two dimensions~paper II! we could use conforma
mapping methods to argue analytically that the presence

FIG. 11. Typical particle trajectories in the velocity fields co
responding to Fig. 10.
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large barrier would produce a power-law decay with exp
nent 6/5, independent of the details of shape. Here only
merical methods are available, and we can only conjec
that the barrier exponent is universally approximately 1.3

Next we consider the effects of diffusion. In Fig. 14, w
show the results of single-random-walker simulations
Pe54.83106, again dividing the walker into two group
where the initial orientation is away from or towards th
barrier. As in the cases discussed in Sec. III, diffusion a
fluctuations top(t) which grow as time increases, but th
power-law decay regimes are still clearly identifiable. At lo
Pe, the behavior is somewhat different. Figure 15~a! shows
the transit time distribution in the cube without the barr
present, at Pe510. The power-law regime and diffusiv
shoulder are present, as in the sphere examples of Sec
and verify that the behavior we are discussing is not sensi
to the overall shape of the flow region provided it
‘‘rounded.’’ With the barrier present, Fig. 15~b!, there are
deviations from straight-line behavior at short times, and
more rapid decay at longer times, the latter due to the sys
being effectively smaller. At still lower Pe51.5, shown in
Fig. 15~c!, the power-law region is simply absent.

V. CONCLUSIONS

We have examined some of the generic properties of
hydrodynamic dispersion of a passive tracer in ‘‘reservo
situations, where the background fluid flow occurs betwe
localized sources and sinks in a finite-sized thre
dimensional porous medium. The quantity of greatest in
est is the transit time probability distributionp(t), which
may be measured by examining the tracer concentration
side the reservoir itself. As in the two-dimensional cases c

FIG. 12. Streamlines in they50 plane for the barrier example
of Sec. IV B.
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4256 56MING ZHANG AND JOEL KOPLIK
sidered previously by us, and in contrast to the well-stud
case of quasi-one-dimensional flows,p(t) displays regions
of power-law and exponential decay separated by a shou
and the parameters of these features may be precisely c
lated with the geometry and flow field within the reservo
The power-law exponent can be related to the multipole
der of the source-sink distribution by an algebraic relatio
ship, the location of the shoulder is connected via diffus
to the size of the reservoir, and the exponential decay c
stant can be related to the velocity field near stagna
points in the flow. The results are not sensitive to the pr
ence of ‘‘weak’’ disorder, meaning uncorrelated local pert
bations which are not too strong, but underO~1! perturba-
tions in highly heterogeneous systems one can see diffe
behavior. The qualitative distinction between the two case

FIG. 13. Behavior of the transit time distribution in the pu
convection limit for the barrier example.~a! Tracer emitted away
from the barrier, and~b! tracer emitted towards the barrier.
d

er,
re-
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just that weak perturbations do not alter the global shape
the streamlines.

The behavior discussed in this paper indicates that sim
noninvasive measurements of dispersion in porous me
flows contain extensive information about the geometry
the flow domain. The key ingredient is the kinematics
convective motion on fluid streamlines, and the methods
veloped here may be applicable to other situations wh
hydrodynamic dispersion enters. In terms of general kno
edge, we have shown that even relatively simple flow c
figurations display a variety of scaling laws and surprisi
connections between flow and tracer motion. A modest
plication of these results is to provide a check on any m
detailed calculation by elucidating some generic features
the transit time distribution. More importantly, in practic
situations involving underground reservoirs where one

FIG. 14. Single-random-walker simulations ofp(t) for the bar-
rier example at high Pe, in the same format as Fig. 13.
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FIG. 15. Effects of the barrier on the transit time distribution at low Pe, using the probability propagation method.~a! p(t) at Pe510 in
a cube of side 2L, without the barrier,~b! the same,with the barrier present,~c! Pe51.5, with the barrier.
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only limited subsurface information, the results of this wo
allow one to partially characterize the geometry by stand
field measurements alone.
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APPENDIX

The exponents for power-law decay ofp(t) in any dimen-
sionality are given by the following dimensional analys
d

.
he
f

argument, due to Hinch@10#. For annth-order multipole ind
dimensions, the velocity potential is

F~rW !5A f~VW !r 22n2d,

whereVW refers to thed21 angular variables, and the powe
of r follows from the fact that a monopole (n50) satisfies
¹2F5dd(rW). The relation between velocity and potentia
uW 5¹W F, gives the dimensions@F#5L2/T, whereL and T
are length and time scales, so that@A#5Ln1d/T. Now let
C(t) be the flux of tracer particles leaving a small sphe
about the source which arrive at the sink at times greater t
t. ~The stream function in 2D has a somewhat similar int
pretation, hence the notation.! Since flux has the dimension
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of velocity times @(d21)-dimensional# area, @C#5Ld/T,
and since the only dimensionful quantities on whichC(t)
can depend areA and t itself,

C~ t !5aAd/~n1d!t2n/~n1d!,

wherea is a pure number. The rate at which tracer partic
arrive at the sink is then
-

.

,

s

p~ t !;2C8~ t !;t2~2n1d!/~n1d!, ~A1!

in agreement with the results in this paper and II. Note t
the exponent is always between21 and22, in accord with
the general constraints noted in II.
de-
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