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Tracer dispersion in three-dimensional multipole flows
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The transit time distribution for the hydrodynamic dispersion of a passive tracer in three-dimensional
reservoir configurations of localized sources and sinks is related to the large-scale geometry of the system.
Extending previous work on the planar case, we find that the first-passage transit time probability distribution
function has a region of power-law decay, depending only on the multipole order of the distribution of fluid
sources and sinks, an exponential decay region, whose characteristics are related to stagnation points in the
flow field, and a shoulder whose location is related to the system size. Tracer measurements may thus be used
as a noninvasive surface diagnostic tool to characterize subsurface res¢ &063-651X97)11710-X

PACS numbg(s): 47.55.Mh, 05.40tj

[. INTRODUCTION and tracer backflow is negligibleAn equivalent problem is
that of a random walker who starts at the inlet, executes a
The majority of theoretical and laboratory studies of hy-walk whose random steps are biased by the local velocity
drodynamic dispersion in porous media focus on flows infield, and is absorbed at the outlgit) is then identical to
which the average fluid and tracer motion is one dimensionahe first-passage probability distribution function for arrival

[1-5]. Aside from the relative ease of analysis associatedt the sink. _ .

arises automatically in studies of cylindrical “cores” of pgtential flow due to a set of sources and sinks at positions
natural porous material extracted during drilling. However,{a;} with respective volumetric fluxefQ;} is

in many practical applications to aquifers and hydrocarbon

reservoirs, fluid enters and leaves the system through wells,

which are localized sources in three dimensions, and so the u(r)
flow is multipolar rather than linear on average. Three pre-
vious paperg6-8] (referred to henceforth as I, Il, and I,
respectively considered dispersion in multipole flow in two
dimensions, appropriate to an approximately planar porous

stratum in the earth. The results indicated first that dispersion d=-3 Qi

>

Va(r),

where

1 r
— + =
Ir—a| alr—Al

in two-dimensional(2D) multipole flow differed qualita- T 4w
tively from the quasilinear case, and second that the distri-

bution of transit times between sources and sinks incorpo- . . . . .
rates a great deal of information about the reservoilwhereq) IS the_ V.EIOC'ty potential, proportional 1o the fluid
geometry. This paper extends the earlier methodology to th ressure, and it is assumed that we have a closed system so

X .. that 3,Q;=0. In most cases we are interested in a finite
more general case of 3D systems, and we find a qualitative__.. . o - .
RN . o ) Spatial region with impermeable boundaries, which we take
similarity but important quantitative differences.

We will consider a steady incompressible fluid flow in ato be a sphere of radiug, on which the normal fluid velocity

three-dimensional porous medium, satisfying Darcy’s lawShould vanish. The terms in ECL) involving AiE(R/ai)zai_

into which ad-function pulse of passive tracer is inserted at2'€ Precisely the image sourdej outside the sphere which
timet=0. The flux of tracer exiting the system as a functionenforce the latter condition. The tracer concentrationt)

of time, p(t), will be the focus of the analysis. Typically, in satisfies the convective diffusion equati@®DE)

petroleum recovery applications, for example, fluid enters

the medium at an injection well and exits at one or more

producing wells, and the well diameters are very small com- cC - . - )

pared to the extent of the reservoir. In consequence there is & Tu(r)-Ve=DV-e, (2
effectively a point source and multiple point sinks for fluid,

and the flow field is a potential flownultipole The tracer

concentratiorc(r,t) is assumed to satisfy an appropriate lo- With diffusivity D. Strictly speaking one should use the ef-
cal convective diffusion equation with boundary conditionsfective diffusivity tensor[1-5] which is a function of the
corresponding to unit source of flux, reflecting conditions atvelocity u(r), but as shown in Il, the results for multipole
the boundaries of the porous medium, and absorbing boundlows are independent of which is used. The reason is that
ary conditions corresponding to point sinks at the flow out-the modifications toD are only important when the local
let(s). (The fluid velocity at entry and exit is large in practice, Peclet number is large, but in this case the tracer motion is

, @
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4 fect occurs at a time given by the transit time from source to
boundary to sink. Since velocities tend to be small near the
boundary, the local Réet number is often small there, and
the tracer motion and the corresponding transit time would
be diffusive. (4) Outgoing streamlines which approach a
stagnation point have velocities which vary linearly with the
distance from it. Correspondingly, tracer particles following
such streamlines spend an exponentially long time near the
stagnation point, leadin@ee belowto an exponential decay
in p(t). (5) If the system is large enough, and/or the fluid
velocity is small enough, the motion will be predominantly
diffusive at large distances from the sources and sinks. In
this case the tail op(t) is controlled by simple diffusion in
a finite region, and an exponential decay is expected. In
drawing the figure, we have omitted the distinction between

FIG. 1. Generic form of the transit time distribution obtained in regions(4) and (5), but it was observed in some of the 2D
this paper. cases in Il

The general arguments in the last paragraph summarize
the 2D results in6—8] and their demonstration in 3D will be

dominated by convection anyway, while at lowoRg num- the subject of this paper. In addition, the detailed arguments

bers where diffusion matters, the corrections are unimportal follow will provide universal numerical values for the
to the scaling behavior. power-law exponents, and system-dependent estimates for

The distinction between the well-studied case of cordh€ exponential decay rates. The methods used here dire_ctly
flows and the higher-dimensional flows considered here i§Xt€nd those of the earlier papers to 3D, and we proceed in a
that in the former case the velocity field is constant on averSimilar fashion. In Sec. Il we focus on the power-law regime,
age, so that a tracer pulse simply translates with the mea@d consider the limit of pure convection in multipole flows.
velocity and spreads about its center due(donvectively |0 incorporate diffusion, but remain at highdket numbers,
enhancej diffusion. All fluid streamlines run more or less & numerical method based on individual random walkers is
unidirectionally from source to sink and, at least in the sta0Ptimal. At low Pelet number it is more efficient to consider
tistically homogeneous and isotropic case, are affected by tH€ ensemble of random walkers, or equivalently the con-
same random environment. There is thus a well-definedfnuum CDE. We discuss and implement two related meth-
mean velocity about which the individual tracer particles®dS: Which may be described as “probability propagation.
fluctuate, so that the tracer exit profile is sigmoidal. The most N€S€ methods are reviewed and applied in Sec. Ill. Lastly
interesting feature is the width of the step, which can beVe turn in Sec. IV to the effects of systematic deviations
related to the effective tracer diffusivity, and large-scale het{fom statistical homogeneity in the porous medium. For
erogeneities manifest themselves as long-time tailg(i). weakly c_orrelated fI_uctuatlons we flnd no chang_e in our re-
In higher dimensions, the flow is instead multipolar angsults until the magnltude_(_)f the relative perturbat|0|®|(i). _
spreads the tracer in all directions. Since the velocity is &-2r9€-Scale heterogeneities, such as impermeable barriers,
strongly varying function of position, different packets of 40 Yiéld significant changes, however, and we discuss one
tracer are affected by entirely different environments. nontrivial example in detail. A summary and conclusions

A qualitative analysis of the features of the transit time@PPear in Sec. VII. A very general argument for the power-
distribution in the multipole case is as follows. The flow field 12V €xponents, due to Hindi0], is given in the Appendix.
can be divided into several subregions, which are in one-to-
one correspondence with distinct features in a typical plot of Il. PURE CONVECTION
p(t) vs time given in Fig. 1(1) The early arrival regime
corresponds to tracer which moves roughly directly from Most of the behavior we find in multipole flows appears
source to sink. This part of the curve is sensitive to smallin the limit of pure convection, or infinite Rkt number, and
scale features of the geometry, such as the distance frofirthermore analytic arguments are possible in this case. We
source to sink, and will not be considered in detail herefirst consider simple dipole flows numerically, then relate the
Tracer which does not initially head towards the sink is carobserved features to simple approximate analytic calcula-
ried out into the porous medium on a streamline of the muliions, and finally verify the systematic behavior in more
tipole flow field. (2) Those streamlines which simply circle complicated configurations.
between source and sink without approaching the system
boundaries are scale invariant—the velocity decays as a
power of distance and, as we shall discuss, there is a corre- ) ) ) )
sponding power-law decay ip(t). (3) Some outgoing In pure convection tracer particles are s!mply carried
streamlines do pass near the boundary of the medium and aAdong their initial streamlines, so that the CDE is replaced by
distorted from a pure multipole form; tracer particles follow-
ing such streamlines in a sense reflect from the boundary, -
and produce an enhancement or bumppiit) above the dr(t) G(F (1) )

In p(1)

Int

A. Simple dipole flow

value associated with pure multipole flow. This “echo” ef- dt
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The velocityu(r) is given by Eq(2), specialized to the case 10" gy
of a source and sink placed af ,=(0,0,+ a), respectively. 10° L
We nondimensionalize all lengths usiag and time using 10° _
47a%lQ, so that the equations of motion simplify to R
u(ry=vd with 107 ¢ E
10% [ ]
10* ]
®=[V,(0,0~1)+rV,(0,0—R?] 05 b 3
4 10° 1
+[V1(0,041)+1V4(0,0+R?)], (4) 0
- - . . . 10°® E .
whereV,(ro)=—1/]r —r¢| is the potential of a point source 0
at FO. The terms in Eq(4) are the source and sink &,0, 10_10 3 E
1) along with the image sources @,0,+R?) which are 1077 ¢ E
needed to make the normal velocity V® vanish on a 107k :
sphere of radiufR [9]. The flow is symmetric about the 1072 Dot R R
axis and convective tracer motion is confined to a plane of 107 107 10" 10% 10° 107 107 107 10° 10" 10

constant azimuthal anglé.

If the flow domain is unbounded, correspondinge-
in Eq. (4), we can actually find the transit time distribution
analytically. In Il it was shown for planar convection in a
simple dipole velocity field that the transit time from source
to sink along a streamline is

2
t(9)=2cscg[1— Hcotd] — Tt

O0—

Here 0 is the initial angle with respect to the dipole axis,
with the convention tha#=0() is the direction towards
(away from) the sink. Convective motion in a static flow
field is deterministic, but a probability distribution of transit
times results from a distribution of initial anglés

=12 [ i1y I Loy Lol Loy [ L
113107 12x107 13x107 14x107 15x107 16x107 17x107 18x107 19x107

de
p(t)=p(0)‘a- ® ® !
FIG. 2. Transit time distribution for pure convection for a

The initial angle distribution is determined by the physicalSimPle source-sink dipole inside a sphefa) complete range of
consideration that tracer emitted from a high-velocity pointimes: (b) tail region.

source will spread out uniformly in direction, corresponding
to the locally radial velocity profileu(r)~VV,;(0,0~1).
The appropriate distribution of initial angle is the(6)

7 are not distorted by the impermeable boundaries, and the

«sing, uniform in solid angle. Substituting into E¢) we infinite-space analytic res_ult should and does _apply._For
obtainp(t)~t~5% A simple and self-contained but approxi- very close torr the streamlines approach stagnation points on

mate argument for this result will be given belofin the  the boundary of the confining sphere rat (0,0,+R), and
completely planar case considered inp() is a constant the tracer motion is substantially altered. In Figbj2 we
andp(t)~t~ %3] show the Iong-t|me region in a semilog plot, which is well fit

If we return to a spherical flow domain and retain theby P(t)~e™"" with 7=2.5x 10",
image terms, the transit time distribution must be found nu- Because the motion is planar, the decay constanay be
merically. A random initial angle is chosen with probability found directly using previous arguments for the 2D case. It
distribution p(6), Eq. (3) is integrated numericallyusing a  Was shown in Il that the distribution of transit ime¢T) for
variable-step, variable-order, backwards difference roytine Particles to traverse the region near a 2D stagnation point is
and p(t) is found numerically from Eq(6). The result is
shown in a log-log plot in Fig. @): there is a seven-decade

region of times wherep(t)~t~%* followed by a cutoff. dx,
(The early-time regime is omitted as being uninteresling. P(T)=Po(Xo)| 57| ~ Po(0)e ©T. 7)
in Il, streamlines with initial angles near but not too near to Xo—0
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In this expressiony, is the initial displacement transverse to  In the convective limit, a tracer particle remains on a
the streamline leading to the stagnation point, with probabilstreamline, where¥ is a constant, so the trajectory is

|ty distribution Po, and GE|(9UZ/(92|, wherez is the local r~(sinzapn,/n\Il)1/n_ Wr|t|ng u9=r€, and e|iminating' we
coordinate along the streamline. The trajectories leading tﬂave'0~f(0)‘lf(”+3)’” where the explicit form of will not

the tail region ofp(t) have relatively large velocities near be needed. Now for anth-order multipole, the flow field

the source da?d sink, gxpongntlally stallsveloi:ltl_e-s near th%onsists oh lobes of roughly concentric streamlines, each of
two antipodal stagnation points, a@(R ") velocities on which traverses a certain range @fThe transit time is then

the circular arc near the sphere boundary. The overall transif s time required fo to run through the appropriate inter-
time is dominated by the two stagnation regionsts®T val, and may be computed as

andp(t)~Py(t=2T)~e (¢t where

_‘ 8(R?*+1)?

6, O
® t=f dt=f f (3, (13)
R%(R*-1)°3 0

1 0

. — i . Next we must relate the value df to the angle at which a
is the derivative of the velocity field arising from E@).  yracer particle is emitted from the source. The trajectories

. B _ . _ 7 -
SubstitutingR=100, we obtainT=2.5x10', in agreement cqnihyting to the tail ofp(t) are those which leave the
with the numerical results. The extension of this result to

! : , k ) source neap= . If for r=rqy, 6=m— € with rg,e<1, then
fully 3D trajectories will be given below in Sec. Il D. ¥~ €2 from Eq. (8). The transit time distribution follows

from Eq. (6), with p(6) ~sinf~e andt~ e~ 2("*+3)/n:
B. Power-law behavior
The power-law regime imp(t) may be understood in
terms of the general characteristics of motion along dipolar
streamlines, asin | and Il. 'Wg WI!| conS|d§r the shghtly'more For the dipole case ai=1, we recovem(t)
general case of tracer emission in an axially symmetric mul- -
4 . . . served numerically.
tipole flow, since the argument is essentially the same as for
the dipole case. If in potential flow we have an arbitrary
distribution of sources and sinkﬁ(F), it is often useful to ] .
represent the solution as a multipole expansion We have actually studied a number of convective cases
involving higher multipole momentgl1], but the trend can
be seen clearly from two further cases, an asymmetric flow

p(t)~t7(2n+3)/(n+3)' (14)

~t~%4 as ob-

C. Numerical results for other flows

R - A | to explore the effects of variation in azimuthal angle, and a
d(r)= —IZO m_E | Srrgdm “Yim(6.¢), (9  higher multipole flow to verify the predicted variation with
IR n.

. ] First we consider an asymmetric dipole flow, arising from
where the Y, are spherical harmonics andym 3 source ofdimensionlessstrength+2 at (0,0,) and two
=fd3rr/Y,*m(6,¢)p(r) are multipole moments. Suppose sinks of strength—1 at (0,+=1,0). The velocity potential,
that far from the sources and sinks, and also far from théncluding image terms, is
spherical boundary of the flow domain, the leading nonvan-
ishing term in the distributiop is axially symmetric (n=0) R
and has multipole order, so that ®(r)=[2Vv4(0,0,)-V4(0,1,0—V4.(0,—1,0)]

D~r-"1p (). (10) +r[2V,(0,0R?)—V;(0,R?0)—V,(0,—R2,0)].

whereP,, is a Legendre polynomial. For an incompressible (15

axisymmetric flow, the velocity field may be given equiva- The planar streamlines in thez plane are shown in Fig. 3
lently in terms of either the potentidh or the stream func-  for orientation, but the flow field generally varies with azi-
tion ¥ as muthal anglep. Figure 4 shows the numerical results: for the
initial angle of emission of the tracer particle from the source
we choose a value ap and a range of) near 0, and obtain
—-— p(t) using the procedure described above. The curves re-
resing 96 ‘rsing or semble each other and, as summarized in Table I, both the
(1) power-law index and the exponential decay rate are indepen-
dent of ¢. The value ofn=~5/4 is the same as for a symmet-
so from the asymptotic form ob we deduce ric dipole, while 7~2.4x 10" are close to each other but
differ from the previous value for a simple dipole.
Secondly, we have studied a quadrupole “five-spot” pat-
tern, often used in petroleum recovery, with a source of
strength+4 at the origin and sinks of strengthl at the

L) 1a¢>)_( -1 9¥ 1 ¥

J(F):(Ur,ue):(&—r.rﬁ

SirP 6P/ (cosh)
y . STOPn(co%)

= 12
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FIG. 3. lllustrative streamlines in thg-z
plane for asymmetric dipole flow.

o

=
%//7/ ) 7
% /)
iy

corners of a square in they plane at(1,1,0, (1,—1,0), ized by a similarity transformation, and furthermore
(-1,1,0, and (—1,—1,0. (In practice, the five spot is rep- Laplace’s equation implies that its trace is zero. Suppose that
licated roughly periodically.Again we display the stream- in the transformed coordinate systeaj;<<0 so that a con-
lines in the plane for orientation, in Fig. 3, and repeat thevected tracer particle approaching the origin along the 1-axis
procedure of emitting tracer at variogsand a range ob.  hasx,= —2|a;|x; and approaches the origin exponentially
The results shown in Fig. 5 and Table Il show a power-laws|ow|y, xl(t)=x10e’2|all“. In at least one of the other two
region with p(t)~t~ " and an exponential decay tail with directions, the corresponding diagonal quadratic terd iis
T~2.5X 105, both independent of the |n|t|aj> The power- positive, so, for examp|e(2(t):)(20e+2322t with a,,>0. A
law exponent agrees with the theoretical estin@® with  trajectory near the 1-axis approaching the origin will even-
n=2, although the curves have a larger preasymptotic retyally diverge outwards from the stagnation point in the
gime associated with the fact that the lobes of the quadrupolg-direction. We can define a transit tifiefor the stagnation
field are less developed. o point region by requiring that the outgoing velocity
. ”The fgct that the behavior gi(t) is mdependem of the is O(1): XZ(T)=U0=O(1). This definition yields T
|r)|t|al gmmuthal anglep came as a welcome surprise to us, = (2a,,) ~1INUy/2a,%5. If the third diagonal element b
since it permits an understanding of the results by analyligs \eqative, that coordinate tends to zero, while if it is posi-
arguments. Subsequent to the original submission of this Pive the ab(;ve argument should make usé of the largesof
per, an eI_eggnt gnd very general grgument was found bé{ndagg and its spatial direction.
Hinch, which is given in the Appendix. The distribution of initial coordinates near the stagnation
point leads to an exponential distribution of transit times:

D. Three-dimensional stagnation points

We wish to extend the 2D connection between stagnation
points and exponential decay pft) derived in Il to the 3D 0
case. Suppose the stagnation point lies at the origin, anoP(T):f dXzodxsop(Xzo'X30)5(T— Ezzlnzazzxzo)
expand the velocity potential locally as

]
_ —2a,,T 0 _—2a,,T —2a5,T
_er 22 f dX3Op( 5a e 22 Xazg| ~ € 22!
22 Toow

q)(;):a0+2 aiXi+Z aiijin‘f'"'. (16)
i i,
17)

The constang, is irrelevant, and the linear term vanishes

identically if x=0is a stagnation point. The matrix of qua- For the asymmetric dipole example with stagnation points at
dratic coefficients{a; ;} is symmetric and can be diagonal- (0,0,+R) one finds after some straightforward algebra that
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FIG. 4. Transit time distribution for pure convection in asymmetric dipole flow for various initial azimuthal aggiesa) 0, (b) 7/6,
(c) w/2, (d) 27/3.

{a; J} is diagonal with eIementa11 =—4.9X 105~a2’2 and complete trajectory with two stagnation points is then twice
az3 =2.41x 10', where we have takeR=100 as in the nu- 2ag3 or r=2.41x 10/, in agreement with the numerical re-
merical simulations. The decay constant associated with theults, taking into account the uncertainty in estimating the
decay constant from the numerical data. Similarly for the
TABLE I. Power-law exponent§p(t)~t~ <] and exponential ~ fivé-spot quadrupole flow, one finds=2.50x 10°° analyti-
decay constan{g(t) ~e!7] fit to the numerical results for axisym- cally, in comparable agreement with the numerical values.

metric dipole flow, for various initial azimuthal angles.
Ill. INCORPORATION OF DIFFUSION

—7
%o * <10 At any finite Pelet number tracer particles will of course
0+ 1.25+0.02 2.470.04 diffuse as well as convect, but if Pe is large it is computa-
ml6 1.25£0.01 2.410.04 tionally convenient to simply add some random diffusive
=3 1.24+0.01 2.45-0.01 motion to the pure convection treated abdu€]. Specifi-
/2 1.24+0.02 2.37:0.03 cally, if a tracer particle is aK at timet, we adopt the
23 1.25-0.01 2.410.01 displacement rule
57/6 1.24-0.02 2.45-0.04

6At 1/2

T 1.25+0.02 247 0.04 A)ZIG()Z)AH-F] P_) ’ (18)
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FIG. 5. Transit time distribution for pure convection in five-spot flow for various initial azimuthal angtes(a) 0, (b) #/12, (c) 7/8,
(d) 7/12.

wheren is a unit vector of random orientation. The tracer ~We have applied the single-random-walker method to the
concentration C()Z,t) satisfies C()Z,t+At)=C(>Z—A>Z,t), th_re_ze flow fields prewously studied in the convectlv_e_ limit.
o S T Initially, a random walker is placed at a random position on
and if this expression is averaged over realizationa ohe the surface of a small sphere of radius=0.01a about the
obtains the CDE in dimensionless form. Although in prin- ding t pth finit .'ng:f' b d
ciple this method is valid at any Blet number, in practice slsurc(;a_(ccl)rresdpon 'ng, 0 the m;ae S'Z,Ier? a vlvke bm;]
the statistical fluctuations obscure the result unless e then displaced according to rule8) until the walker reaches
the surface of a similar small sphere about the sink. The time
TABLE Il. Power-law exponents and exponential decay con-StepAt is chosen so that thq maximum displacement per step
stants fit to the numerical results for five-spot flow, for variousis at most 0.04. The Pelet number is defined as

initial azimuthal angles. Pe=auUn,/D, where the maximum velocity,,, is related
— to the fluxQ by Q=4mu?_r2. The random walk procedure

bo @ 7X10 is repeated 500 000 times, and the histogram of arrival times
0+ 1.42+0.02 2.53-0.02 is converted into the probability distribution functigit) as

w12 1.42+0.02 2.48-0.03 above. In Fig. 6 we show the results for the simple dipole
/8 1.40+0.03 2.48-0.03 flow discussed in Sec. Il A. At the lowest Pe the curve is
16 1.39-0.03 241 0.03 noisy and difficult to interpret, but as Pe increases, we see an
w4 1.35-0.05 2.47-0.04 increasing time interval over which the pure-convection re-

sult p(t)~t~* holds. At long times, noise is still present in
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FIG. 6. Single-random-walker calculationsgft) for a simple dipole flow at various Blet numbers(a) Pe=7161,(b) Pe=71 610, and
(c) Pe=716 100.

the tail region due to the relatively small number of walkers p(x,y,z,t+At)=p,, p(x—7,y,Z,t)+ py_p(x+7,y,Z,t)
present there, but there is a hint of the shoulder alluded to in

the Introduction. Likewise, for the asymmetric dipole flow toyp(Xy=/ 2+, (19)
[Fig. 7(a)] and the five-spot floWFig. 7(b)], at high Pe we

observe a region of convective power-law behavior followed/here the hopping rates apg.. = 1/6= u,(r)At/2/” and so

by a tail region where statistical fluctuations obscure the re2n: an.d represent  symmetric displacements W.'th a
convection-induced bias proportional to the local velocity. In

sult. - :
L . . . _the limit At—0, Eq. (19 reproduces the CDE with
The behavior in the tail regions may be computed USINGH — 2124t Tﬁe timeq st(ep)shoSId be chosen small enough

me;hods which rely on the ccirr:tmuum_ CDE n:oret:_ d'recgy'.that the hopping rates are positive, and a constraint on the
andn a sense average over the previous fluctuations. AS W ayimym value of Pe for a given lattice spacing is thereby

paper Il, we have used two somewhat related methods whic plied: Pe,.=2a/3/. In Fig. 8 we show results using this

might be descriped as “prpbability pr'opaga.\tion.” The sim- method for a representative case: the simple and asymmetric
plest procedure is to consider a spatial lattice of spaging dipole flows at Pe-4.4. A limited range of power-law be-

and letp(r,t) be the tracer concentration or probability of havior is present, along with a very prominent shoulder rep-
occupancy of a lattice site at timet. At a later time, this resenting the diffusive boundary echoes, previously seen in
probability hops to nearest neighbor sites according to 2D calculations.
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FIG. 7. Single-random-walker calculationspft) for (a) asym- FIG. 8. On-lattice probability propagation results fay simple
metric dipole flow andb) five-spot flow, both at Pe716 100. dipole flow and(b) asymmetric dipole flow, both at Pet.4.

We have also extended tludf-lattice continuum method no Change in mean position'

of 1l to the 3D case. Here one again works wiltf,t), but
the time-evolution rule is to first convect this probability to
the positionr +u(r)At, which is generically not a lattice
site. This probability is then redistributed to the adjacent lat-
tice positions in such a way as to conserve the mean positioand diffusive mean-square displacement,

and to relate the mean-square fluctuation to the diffusion

coefficient. In detail, suppose the point to which tracer is

convected is = (x,y,z) and that the nearest lattice site is the > Wijk(Xijk —X)?=(Ax)?=2DAt, etc.,
origin, and letw;;, be the fraction of tracer to be distributed ik

to lattice site {,j,k). We will use the simplest rule, in which

w is only nonzero on the six nearest neighbor siteswhich translates into

(£1,0,0), etc. The constraints om are conservation of
tracer,

/’(Wloo_ W_ 100) =X, etc. f (ZOb)

;N2 2
(/= X) "Wyt X“ (W10t Wo— 101 Woo1t Woo- 1+ Wogo)

k=1, 20
ijzk Wik (209 +(/+X)°W_100=2DAt, (200
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FIG. 9. Off-lattice probability propagation results f@ simple
dipole flow and(b) five-spot flow, both at Pe4.4.

etc. The solution of these equations is

x2+y2+ 72+ 6DAt
Wogo=1— 2 )
2/
2DAt=X(/%X)
Wei00= 2z » €l (21)

difficulty by limiting the convective steps ta|,|y|,|z|< /73,

in which cased=2/9 is satisfactory. There is a resulting
maximum Pelet number of 3/3a//. We illustrate the
method in Fig. 9, where we have considered the simple di-
pole and five-spot flows at Pe4.4. The simple dipole results
are consistent with the earlier probability propagation
method, and in both cases we again see a power-law interval
with the convective exponent and a diffusive shoulder.

IV. EFFECTS OF HETEROGENEITY

Up to now, we have considered porous media that are
statistically homogeneous and isotopic, so that the con-
tinuum equations used above have constant coefficients. Re-
alistically, petroleum reservoirs and aquifers have property
variations on a range of length scales ranging from the pore
scale fluctuations which have been implicitly averaged over
here to macroscopic geological featufds]. It is therefore
appropriate to investigate the effect of such heterogeneities
on the characterization of the transit time distribution pro-
posed here. The range of possibilities is too great for a sys-
tematic survey, so we will consider three cases—
uncorrelated fluctuations in the velocity field, layered but
otherwise uncorrelated fluctuatiofi®presenting the effects
of geological stratification and an example of a macro-
scopic barrier.

A. Uncorrelated fluctuations

We begin with the case of a quenched random fluctuation
in the velocity field, taken in the form

U(X)=Ug(X) + U, (X) + Ug(X). (22)

In this expressiony, is the unperturbed source-sink velocity
field, and the random perturbation i§(x) =\ &(X)Uo(X),
where\ is an adjustable magnitude, aéids a random num-
ber in the interval[ —1,1] assigned at each lattice point.

While l]o is an incompressible velocity field by construction,
the uncorrelated random term has a nonzero divergence in
general. We restore incompressibility by adding a counter-
term u,=V®,, whereV2®d.=—V-u,. The Poisson equa-
tion for @, is solved numerically using a standard solver
[14] and differentiated numerically to obtain.. The tracer
motion is obtained using the single-random-walker method;
fluctuations in the velocity would be most significant at high
Pe, so we restrict ourselves to this regime. Since the tracer
motion in this method is not restricted to the lattice sites

where u, and u, are defined, the values of the latter two
fields are obtained by numerical interpolation.

In Fig. 10 we showp(t) for three choices of fluctuation
strengthA =0.01, 0.1, and 0.5, for a simple dipole flow in a
sphere of radiufR=30. (We use a smaller system than pre-

Again as in I, there are constraints which follow from posi- yiously, due to the computational cost associated with solv-
thlty of the redistribution pl’obabllltles. If we define |ng the Poisson equation' and the time interval where power-

d=2DAt//?, then wgy,>0 gives an upper bound od,

law behavior applies is correspondingly redugéithe trend

while wyo5>0 gives a lower bound. Ostensibly we can haveof the results is that for small enoughthe results are indis-

r2=3/7?/4, since the origin is the nearest lattice site tbut

in this case no value af ensures positivev’s. We avoid the

tinguishable from simple dipole flow, for intermediate values
the transit time distribution is noticeably altered but thé/*
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FIG. 10. Effects of uncorrelated fluctuations pft): simple dipole flow at Pe 716 100 using the single-random-walker method for
various fluctuation strengthd.= (a) 0.01,(b) 0.1, (c) 0.5.

power law is still recognizable, but f@(1) fluctuations it is B. Effects of an impermeable barrier

difficult to recognize a power law at all. The behavior of |t e introduce a major change in the flow pattern, we
p(t) correlates with the alteration in typical individual par- expect that the global shape of the streamlines is altered and,
ticle trajectories, illustrated in Fig. 11. Realistic geologicalin the light of the results of paper Il and the analytic esti-
systems often show prominent stratificatipt3], and we mates in Sec. I B, a change in exponent. We illustrate this
have considered one example, where we suppose that layasghavior by the single example of a large impermeable bar-
are oriented parallel to the-y plane. In Eq.(22), we then rier placed in the simulated reservoir. We consider a cubic
takeN— A\ (2) with layers of thickness 5 ankl(z) piecewise geometry of —L<X,y,z<+L, with a source-sink pair at
constant within each, with values chosen randomly betweefD,0,=a) with a barrier in the region behind the source:
0 and 0.5. The power-law behavior is still evident. The con{—L<x<0,—-L<y<L,—2a<z<-3a}. The streamlines
clusion from this set of examples is that the predicted powerin the meridional y=0) plane are shown in Fig. 12, where
law behavior in Eq.14) is robust, and will survive under we have adopted the valués=8 anda=1, and were ob-
perturbations which are not too strong. We have also considained from a numerical solution of the Poisson equation for
ered the transit time distribution at lower Pe in the presencghe velocity potential, with Neumann boundary conditions on
of fluctuations using the probability propagation method, andhe sides of the cube and the barrier. The tracer transit time
even forh =0.5 there is only a slight change in the computeddistribution was studied for various ranges of Pe using all of
p(t), and the shoulder in particular. the methods described above.
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FIG. 12. Streamlines in thg=0 plane for the barrier example
of Sec. IV B.

large barrier would produce a power-law decay with expo-
nent 6/5, independent of the details of shape. Here only nu-
merical methods are available, and we can only conjecture
that the barrier exponent is universally approximately 1.39.
Next we consider the effects of diffusion. In Fig. 14, we
show the results of single-random-walker simulations for
Pe=4.8x 1(°, again dividing the walker into two groups
i where the initial orientation is away from or towards the
s barrier. As in the cases discussed in Sec. lll, diffusion adds
(R . . . .
©) L fluctuations top(t) which grow as time increases, but the
power-law decay regimes are still clearly identifiable. At low
FIG. 11. Typical particle trajectories in the velocity fields cor- P€, the behavior is somewhat different. Figur¢alShows
responding to Fig. 10. the transit time distribution in the cube without the barrier
present, at Pe10. The power-law regime and diffusive
shoulder are present, as in the sphere examples of Sec. lll,
and verify that the behavior we are discussing is not sensitive
For pure convection, there is a clear distinction betweeRg the overall shape of the flow region provided it is
trajectories emitted in the two half spaces away from or to+younded.” With the barrier present, Fig. 15, there are
wards the barrier. For the former group>0 or ¢o<|7/2|,  deviations from straight-line behavior at short times, and a
the meridional streamlines at least are qualitatively similar tqnore rapid decay at longer times, the latter due to the system
those of simple dipole flow, and indeed as seen in Figa)13 peing effectively smaller. At still lower Pel.5, shown in

the simple dipole exponem(t)~t~>* applies. The second Fig. 15c), the power-law region is simply absent.
group consists of trajectories emitted into the lower half

plane, and now the behavior is sensitive to the initial value of
0. Here, Fig. 12 suggests thatéf is not too close tar the

M
e

streamllnes are again r.oughlly d|pollar,. but otherwise they. are V. CONCLUSIONS
substantially altered. Since increasifigncreases the transit
time, we would expeap(t) to have a dipolat ~>* regime at We have examined some of the generic properties of the

moderate times, crossing over to some other behavior dtydrodynamic dispersion of a passive tracer in “reservoir”
longert. The result of the convective calculation shown in situations, where the background fluid flow occurs between
Fig. 13b) for m/2<|¢|<a confirms this prediction; there localized sources and sinks in a finite-sized three-
is a dipolar interval at short times, crossing overttd3°,  dimensional porous medium. The quantity of greatest inter-
and eventually an exponential decay due to finite systenest is the transit time probability distributiop(t), which
size. In two dimensiongpaper 1) we could use conformal may be measured by examining the tracer concentration out-
mapping methods to argue analytically that the presence of side the reservoir itself. As in the two-dimensional cases con-
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FIG. 13. Behavior of the transit time distribution in the pure  FIG. 14. Single-random-walker simulations pft) for the bar-
convection limit for the barrier exampléa) Tracer emitted away rier example at high Pe, in the same format as Fig. 13.
from the barrier, andb) tracer emitted towards the barrier.

just that weak perturbations do not alter the global shape of
sidered previously by us, and in contrast to the well-studiedhe streamlines.
case of quasi-one-dimensional flowst) displays regions The behavior discussed in this paper indicates that simple
of power-law and exponential decay separated by a shouldenpninvasive measurements of dispersion in porous media
and the parameters of these features may be precisely corfiews contain extensive information about the geometry of
lated with the geometry and flow field within the reservoir. the flow domain. The key ingredient is the kinematics of
The power-law exponent can be related to the multipole oreonvective motion on fluid streamlines, and the methods de-
der of the source-sink distribution by an algebraic relation-veloped here may be applicable to other situations where
ship, the location of the shoulder is connected via diffusionhydrodynamic dispersion enters. In terms of general knowl-
to the size of the reservoir, and the exponential decay coredge, we have shown that even relatively simple flow con-
stant can be related to the velocity field near stagnatiofigurations display a variety of scaling laws and surprising
points in the flow. The results are not sensitive to the preseonnections between flow and tracer motion. A modest ap-
ence of “weak” disorder, meaning uncorrelated local pertur-plication of these results is to provide a check on any more
bations which are not too strong, but und®(l) perturba- detailed calculation by elucidating some generic features of
tions in highly heterogeneous systems one can see differethie transit time distribution. More importantly, in practical
behavior. The qualitative distinction between the two cases isituations involving underground reservoirs where one has
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only limited subsurface information, the results of this work argument, due to Hinch.0]. For annth-order multipole ird
allow one to partially characterize the geometry by standardlimensions, the velocity potential is
field measurements alone.

d(r)=Af(Q)rz—n-¢,
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Energy. V2®=§%r). The relation between velocity and potential,
u=V®d, gives the dimensiong®]=L2/T, whereL and T
are length and time scales, so tfi@]=L"*%T. Now let
¥ (t) be the flux of tracer particles leaving a small sphere
about the source which arrive at the sink at times greater than

The exponents for power-law decaymft) in any dimen- t. (The stream function in 2D has a somewhat similar inter-
sionality are given by the following dimensional analysis pretation, hence the notatigrSince flux has the dimensions

APPENDIX
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of velocity times[(d—1)-dimensiond| area, [¥]=LYT, p(t)~— W' (t)~t~ (@n+d/n+d) (A1)
and since the only dimensionful quantities on whigt{t)
can depend aré andt itself,

W(t):aAd/(ner)tfn/(ner)'
in agreement with the results in this paper and Il. Note that

wherea is a pure number. The rate at which tracer particleghe exponent is always betweenl and—2, in accord with

arrive at the sink is then the general constraints noted in Il
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